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Abstract. We present an efficient method for extracting the percussive
component of a signal in real-time and a method for using this informa-
tion to perform reliable beat tracking. The percussive signal can be used
for the transcription of drum events and to learn the drum pattern for a
song. We evaluate this method on several databases and thereby provide
a comparison to other real-time methods.

1 Introduction

Beat tracking algorithms aim to replicate the human ability to tap in time
with music. The problem has been approached using event detection [6],
multiple agent hypotheses [3], comb filter resonators [7] and autocorrela-
tion [2]. As input to the beat tracking algorithm, most methods use an
onset detection function [1] — a mid-level representation that reflects the
extent to which musical ‘novelty’ occurs in the current frame.

Since drums tend to drive the rhythmic pulse of a song, it makes sense
to aim to synchronise most closely with the percussive elements of the
music. Fitzgerald [5] applied median filtering to a spectrogram to separate
the percussive and harmonic components of a signal. Whilst the technique
is relatively simple to implement compared to other source separation
methods, in a real-time system it can be computationally expensive and
introduce a significant latency. In this paper, we present a method for
percussive separation that can be carried out in real-time and evaluate
a percussive detection function to improve real-time beat tracking. Our
intended application is live synchronisation of audio and video.

2 Method

Fitzgerald’s [5] technique for percussive separation is motivated by the
observation that percussive features tend to consist of wide band noise
across all frequencies and appear as vertical lines in the spectrogram,
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Fig. 1. Illustration showing how we add a new value (0.73) and efficiently find the
median of the most recent N values.

whilst harmonic components consist of frequencies which persist, and
thus appear as horizontal lines. Median filtering is applied in both the
frequency and time directions to create separate percussive-enhanced and
harmonic-enhanced spectrograms. These can be compared to create a per-
cussive mask which indicates the extent to which the energy of each bin
belongs to the percussive component. A percussive detection function is
obtained by summing the percussive component at a given time frame
across all frequencies. By summing frequency bins below 120Hz, and fre-
quency bins between 200 Hz and 500 Hz, we can create functions which
correlate to kick and snare strength respectively.

To carry out percussive separation in real-time, we require an efficient
technique for median filtering. Median filters operate by replacing a given
value in a signal with the median of the set of N values centred on the value
under consideration. By storing the sorted set of values and the sequential
set of values (preserving the order in which they arrived), we can simplify
the calculation. Figure 1 illustrates how the process works in practice.
Given a new value, we need to remove the oldest value, determined using
the sequential array, by searching for this value in the sorted set of values
and removing it from both sets. Finding the median then only requires
adding the new value to the sequential set (at the most recent position)
and inserting the new value at the correct location into the sorted set.

For a standard FF'T of framesize 2048, we might limit the median fil-
tering, but this still require several hundred values. Our proposed method
allows us to calculate a thousand median filter values in approximately
0.7 msec rather than 2.3 msec. When processing audio in real-time, this
is a significant reduction in the time taken for median filtering.

We use this percussive detection function as the input to our beat
tracking algorithm. We adapted the method from Stark et al. [8], which
uses a tempo following technique from Davies and Plumbley [2] and dy-



°
S
T

°
>
T T T

°
>
T

1000 1100 1200 1300
Detection Function Frames

Fig. 2. The top figure shows the percussive detection function (solid) and the complex
spectral difference onset detection function (dotted). The second and third figures show
kick and snare strength functions with detected onsets indicated as vertical lines. The
bottom plot shows the cumulative detection function (solid line) with the Gaussian
window (dotted line) used when making beat predictions (dotted vertical lines).

namic programming method from Ellis [4]. Initialisation is carried by key
commands. A synchronisation process adjusts for the latency inherent
due to percussive separation and uses linear regression to predict the
subsequent beat times. By quantising the kick and snare detection func-
tions relative to the beat positions, we can learn a representation of the
drum pattern. The inter-beat interval is divided into twelve equidistant
temporal bins to include both triplets and sixteenth note events.

3 Evaluation

We evaluated the real-time C++ implementation relative to the Btrack al-
gorithm [8]. Since our intended use is in live performance, our beat tracker
requires initialisation. This seems a preferable design choice rather than
introducing instability by having the beat tracker potentially switch to
alternative tempo hypotheses. For the evaluation, we set the beat tracker
to the correct beat and phase at five seconds into the song. Across the
database, the beat tracker largely outperforms the Birack algorithm, al-
though providing initialisation from the ground truth inevitably intro-
duces a bias in favour our proposed method.



We also created a Max for Live device that enables the beat tracker
to control Ableton Live. A video of the the system is viewable at
http://youtu.be/fT8DXecuXhg and illustrates the system’s response to
tempo fluctuations.

Measure
Database Method |cmlC|emlT|amlC|amlT
Beatles Btrack 48.3163.5| 56.3 | 75.9
(179) Proposed| 63.2 | 78.3 | 63.2 | 78.3
Rock Corpus|Btrack |42.8|58.1|54.4|75.7
(200) Proposed| 56.9 | 75.5 | 57.5 | 76.6
Klapuri Btrack |48.4|57.0|56.0 | 68.7
(474) Proposed| 60.8 | 70.5 | 60.8 | 70.5

Table 1. Comparison between Stark et al.’s Btrack algorithm and our method. The
input feature for Btrack is the complex spectral difference onset detection function.

4 Conclusions

In this paper, we have presented a method for median filtering that en-
ables percussive separation in real-time. We perform beat tracking using
a percussive detection function and generate functions that correlate with
kick and snare events. By learning the patterns of these drum events, we
can form expectations for the drum patterns played in a bar.
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