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ABSTRACT 
Live music performance with computers has motivated 
many research projects in science, engineering, and the 
arts. In spite of decades of work, it is surprising that there 
is not more technology for, and a better understanding of 
the computer as music performer. We review the devel-
opment of techniques for live music performance and 
outline our efforts to establish a new direction, Human-
Computer Music Performance (HCMP), as a framework 
for a variety of coordinated studies. Our work in this area 
spans performance analysis, synchronization techniques, 
and interactive performance systems. Our goal is to ena-
ble musicians to incorporate computers into performances 
easily and effectively through a better understanding of 
requirements, new techniques, and practical, perfor-
mance-worthy implementations. We conclude with direc-
tions for future work. 

1. INTRODUCTION 
Live performances increasingly use computer technology 
to augment acoustic or amplified acoustic instruments. 
The use of electronics in performance predates compu-
ting by many years, and there are many different concep-
tual approaches. The most obvious and popular approach 
is the simple replacement of acoustic instruments with 
digital ones. Another popular approach is the use of inter-
active systems that mainly react to input from human 
performers. In these systems, humans effectively “trig-
ger” sound events or processes. 

Two key aspects of live performance with computers 
are autonomy and synchronization. Autonomy refers to 
the ability of the computer performer to operate without 
direct control by a human, and synchronization refers to 
the ability to adapt a performance to the timing of hu-
mans. For example, interactive systems that are triggered 
by live performers are autonomous because they require 
little or no direct human control, and their synchroniza-
tion is limited to computed responses to live events. 

As we consider other forms of music, particularly tradi-
tional musical forms with scores and multiple parts, syn-

chronization becomes essential. Performances with fixed 
recordings are used in many settings, but these are un-
comfortable because they place the entire synchronization 
burden on humans. One of the promises of real-time 
sound synthesis was to eliminate fixed recordings, creat-
ing an opportunity to actively and adaptively synchronize 
computers to humans [1, 2]. 

An early system to address computer synchronization to 
live performers was the Sequential Drum [3]. The Se-
quential Drum assumes that a sequence of sound events 
to be played is mostly known in advance, but the timing 
and perhaps other parameters such as loudness are deter-
mined at performance time. A performer uses a drum-like 
interface where each drum stroke launches the next sound 
event in the sequence and perhaps also controls loudness 
and other parameters. A drawback of the Sequential 
Drum is its lack of autonomy – it requires a human’s full 
attention during a performance. 

Conducting systems are related to the Sequential Drum 
and a common theme in computer music research [4]. If a 
conductor exists anyway and a computer can follow the 
conductor’s gestures, the computer could be considered 
an autonomous performer. Synchronization requires that 
the computer sense not only beats and tempo but start 
times and other cues as well. In practice, computers can-
not follow “real” conducting intended for humans, but 
there is promise that conducting gestures can offer one 
mode of synchronization. 

The difficulty of following conductors was one inspira-
tion for Computer Accompaniment (CA) systems [5], 
which use score matching to synchronize computer ac-
companists to live performers. CA is autonomous and can 
synchronize to traditional scored music with high reliabil-
ity. There are, however, some drawbacks. First, CA re-
quires a score and for players to follow the score. Im-
provisation and rhythmic variation lead to timing prob-
lems, if not outright failures. Second, CA requires dis-
tinctive input to follow. When the followed instrument 
holds a long note or rests, there is no synchronization 
information. It is possible to follow multiple instruments 
[6], but this adds to the complexity. Finally, CA often has 
limited timing accuracy due to problems of accurate onset 
detection. CA generally works well for chamber music 
with expressive timing, but not well for different forms of 
popular music. 

It is surprising that systems offering autonomy and syn-
chronization for popular music performance have not 
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been pursued more actively. Our goal is to create com-
puter performers that play music with humans. We are 
particularly interested in music with fairly steady beats 
and where synchronization must be achieved through 
beats and measures rather than score following. This is a 
realistic problem that is characteristic of nearly all popu-
lar music, including rock, folk, jazz, and contemporary 
church music. It should be noted that score following 
systems are not a solution to this problem because (1) 
they require consistent playing at the note level to match 
to scores and (2) they do not synchronize with the preci-
sion required for steady tempo. The problem is broad in 
that it touches on music performance practice, music rep-
resentation issues, machine listening, machine composi-
tion, human-computer interaction, sound synthesis, and 
sound diffusion. We refer to this overall direction as Hu-
man-Computer Music Performance, or HCMP. 

Our goal here is to introduce the problems of HCMP, 
survey progress that we have made working together and 
individually, and describe future challenges and work to 
be done. 

2. EXAMPLES OF HCMP SYSTEMS 
To date, we have constructed a number of HCMP sys-
tems. The first system was a large project to create a vir-
tual string orchestra to play with a jazz big band [7]. The 
system used tapping for synchronization, a small key-
board for cues (each key mapped to a different cue), and 
PSOLA [8] for time stretching a 20-track audio file in 
real-time. For this performance, an extra percussionist 
tapped her foot and entered cues. 

This system was reimplemented and integrated with ef-
fects processing software and used by the first author in 
an experimental jazz quartet. This system was designed 
to be operated by the author who also plays trumpet in 
the quartet. Cues are given by a capacitive sensor worn 
on the index finger, and the system uses MIDI files rather 
than audio. 

The B-Keeper system [9] is designed to follow the tim-
ing variations of a live drummer. Dedicated microphones 
are placed on the kick and snare drum, which are used to 
create an accurate representation of relevant drum events 
(Figure 1). 

 
Figure 1. The band Higamos Hogamos performing with 
B-Keeper. 

3. CHALLENGES OF HCMP 
Active research is being carried out on many fronts. This 
section describes just a few interesting problems present-
ed by HCMP and some of the approaches to solving 
them. 

3.1 Detecting the Beat 

Beat tracking algorithms aim to output the times of the 
tactus, the regular pulse with which humans would natu-
rally tap in time with the music. Most beat tracking algo-
rithms first process the signal to create an onset detection 
function [10]. Methods such as autocorrelation, comb 
filtering and interval clustering can be used to detect pe-
riodicity in this signal. The algorithm must also deter-
mine the phase, typically using dynamic programming or 
probabilistic methods, with the premise that musical 
events which correspond to peaks in the detection func-
tion are most likely to occur on the beat.  

Real-time beat tracking algorithms might be used to 
provide a tempo and phase estimate for the underlying 
beat which can be used to synchronise HCMP systems. 
Whilst offline beat tracking algorithms have access to the 
full audio file and can operate non-causally, beat trackers 
for live performance must operate causally in real time. 
Examples of real-time algorithms released as external 
objects for MaxMSP are: btrack~ [11], beatcomber~ [12] 
and IBT~ [13].  

Beat trackers are relatively successful on rock and pop 
examples, although they can exhibit errors such as tap-
ping on the offbeat and tapping at double or half the tem-
po (octave errors). Complex passages, such as those fea-
turing syncopation, can be problematic. Where the tempo 
changes, there is an inherent trade-off between reliability 
and responsiveness [14]. However, for a successful 
HCMP system, performers require full confidence that 
the system will behave as they expect.  

An alternative to sensing the beat in audio is sensing the 
beat from foot-tapping or other gestures. We have suc-
cessfully used a foot pedal in a number of performances 
and studied the foot pedal as an interface for communi-
cating beat timing to a computer. In our measurements, 
the standard deviation of foot tap times is about 40 ms 
[15]. This alone is not satisfactory for music with a 
steady tempo, but we use the “steady tempo” feature to 
our advantage by using regression over previous beat 
times to predict the tempo and next beat time. 

One of the difficult problems of tempo estimation is 
that tempo is normally steady but changes rather rapidly 
at times. We can minimize average error by using long 
regression windows, e.g. performing linear regression on 
the 20 previous beats, but then the worst case error where 
the tempo changes will be musically unacceptable. On 
the other hand, optimizing for the worst case tends to 
highlight special cases, often where synchronization is 
not musically necessary. In practice, we compromise with 
a window size of 5 to 7 previous tap times to predict the 
next tap time. This choice is sufficiently responsive that 
good synchronization, even in rock music, can be 
achieved, but it does require careful tapping. Some prac-
tice and musical skills are necessary, and the system has 
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less-than-ideal autonomy, but this method can be reliable 
and effective. 

We are also considering additional modes of acquisition 
(e.g. video) to augment audio analysis, drawing on in-
strumental technique (e.g. guitar strumming actions). 

3.2 Score Representation 

Synchronizing at the beat level is only the first step to 
musical synchronization. All performers need to be at the 
same musical position, e.g. “beat 2 of measure 5 of the 
chorus.” Before we can talk about synchronization at this 
level, we need a formal model of what synchronization 
means. 

In traditional music theory, a score provides an unam-
biguous sequence of beats and measures. Scores also in-
dicate what each player should play in a given beat. In 
popular music, scores are treated much more casually, 
and the mapping from score notation to performances is 
sometimes specified informally, e.g. “play a 4-bar intro-
duction, play an extra chorus at the end.”  

We could “solve” this problem by insisting on tradi-
tional scores, but the reality is that popular music perfor-
mance often demands flexibility to adapt, even in the 
middle of a performance. It is not unusual for non-
sectional changes also to be made, e.g. the band plays an 
extra measure by “intuition” before continuing with the 
next section. Systems that attempt to synchronize with a 
score need to identify the current score location within it. 
This requires identifying musical features in performance 
at the level at which the score is expressed.  For example, 
a chord list requires chord identification, a lead sheet with 
melody may be able to use that in addition to chords, per-
formances with lyrics may be able to follow the sung 
parts (using techniques such as that of Mauch et al. [16]). 

To address some of these problems, we have recently 
developed a music notation display system for HCMP. 
The system can import images or photos of music nota-
tion, thus leveraging existing printed music. Users can 
manually annotate the music images with control infor-
mation to mark measures, time signatures, section names, 
repeats, codas, etc. (See top of Figure 2.) The system can 
then compute the normal performance order of the score, 
essentially “flattening” the repeats into a linear sequence. 
This flattened score provides a reference mapping from 
measure numbers back to score locations. This mapping 
can be shared across different media (audio players, 
MIDI players, visual displays) to coordinate them. 

Another representation issue is that users may want to 
reorganize the score for a particular performance. We call 
this process “arrangement.” For example, an arrangement 
could be “play sections AABABA in that order, ignoring 
the structure implied by the score.” Figure 2 (middle) 
shows how an arrangement is constructed. The row of 
boxes represents an editable sequence of sections. Click-
ing on a box highlights the corresponding section in the 
score just above.  

While this work solves many representation problems, 
more work is needed to communicate arrangements to 
computer players. Implementing jumps in audio or MIDI 
files is tricky (consider that sections may have pickup 
notes that precede the section and notes that sustain into 

the next section). Ultimately, this illustrates the concep-
tual gap between human musicians who think of sections 
as high-level abstract objects to be realized in perfor-
mance and computer players that model sections as im-
mutable, concrete audio files or MIDI sequences. There 
are research opportunities here to raise the level of music 
abstraction offered by computers. 

At performance time, the score is displayed in perfor-
mance order using a “double-buffered” display allowing 
the performer to always look ahead in the score. (See 
Figure 2, bottom.) The performer can also use this dis-
play to give cues and indicate the current measure to the 
computer. This notation system is now complete, but 
work remains to integrate it with a performance system 
and to evaluate its use in live performances. 

 
Figure 2. Digital music display system. Top is annota-
tion system for indicating measures, sections, repeats, 
and other control structures. Middle is arrangement 
window showing original score and an editable se-
quence of sections constituting the arrangement. Bottom 
is live mode where score is displayed in performance 
order in real time with automatic page turning. 
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3.3 Synchronizing at Higher Levels 

While our work on score representation offers a frame-
work for coordinating performers, we still need to im-
plement coordination. We propose the concept of cues as 
an approach to achieving synchronization in live perfor-
mances. A cue is simply a signal that indicates a score 
location or directs a performer. Cues are typically given 
by humans to one another and take effect on the next sec-
tion boundary. It is not uncommon to give cues many 
measures in advance because communication during a 
performance requires getting the attention of other per-
formers and communication gestures may be unreliable. 

In our systems, cues have several types [17]: 
• Position cues indicate global position and indicate ei-

ther when to start playing or that the computer and 
human(s) have diverged and need to resynchronize; 

• Intention cues indicate a decision has been made 
about the future course of the performance; for ex-
ample, this is the last repetition of a vamp; 

• Voicing cues are not used for synchronization but in-
dicate choices about how a player should render 
media. Volume changes or a request not to play can 
be indicated with voicing cues. 

We have explored different means of giving cues. Our 
first system used a small MIDI keyboard where each key 
was labeled with a position cue that caused the computer 
to play a pre-recorded section of music. A later system 
used a wearable capacitive sensor attached to the index 
finger. By touching the sensor with the thumb, a cue can 
be given. This system detects cues reliably and does not 
intrude upon the human performer.  

Currently, we are working on capturing gestures such 
as nodding your head in the direction of the computer 
performer. Detecting gestures from a continuous stream 
of sensor data is prone to false positives. We are evaluat-
ing the use of dynamic time warping and machine learn-
ing techniques to build a reliable system [18].  

We are also exploring the potential of natural user inter-
faces to minimize disruption to performers. Ideally, a 
computer performer would not require explicit cuing but 
through understanding the performance norms of an en-
semble and observing the gestures the human performers 
make, will be able to determine the intention and position 
cues for itself (i.e. full autonomy).  

To that end, we have experimented with the Microsoft 
KinectTM sensor as an interface for various applications 
including use as a conducting system to set initial tempo, 
as a way to determine intention cues through counting 
raised fingers on one hand (a practice used in contempo-
rary church-music leading to direct the band to a num-
bered score section), to observe guitarists’ actions, and as 
a way to automate page turning. The latter project detects 
head tilt gestures that control the direction of a page turn 
in a PDF file displayed on a computer or (soon) iPadTM , 
controlled over a network.   

In all cases, the major challenge is the robustness of de-
tection in noisy, realistic scenarios. Distinguishing the 
neck of a guitar from a player’s arm has proved difficult, 
even in “near-mode” where the sensor tracks only the 
upper half of the body. The sensor is also very sensitive 
to angle, making it potentially difficult to deploy in real-

istic scenarios. Music stands, piano lids, microphones and 
other normal musical equipment found in stage environ-
ments all work to confound the clear picture required for 
easy detection.  

The page turning system (evaluated by two of the au-
thors in a laboratory setting, one acting as pianist) works 
well with the sensor placed in front of or behind a pianist 
(although is very sensitive to off-axis placement – front is 
best). Unfortunately, this precludes the typical “forward” 
nod for page turns because neck movement in that plane 
is not currently detectable from those sensor positions. 
Other challenges include differentiating expressive 
movement from directive gesture. 

We are also developing chord sequence recognition sys-
tems to identify a score section based on the chord se-
quence played thus far (similar to [19]). There are chal-
lenges in synchronizing the incoming chord sequence to 
the “model sequence” in the score, particularly in the 
presence of inaccurately played, missed, substituted or 
mis-identified chords, and difficulties arising from the 
need to define a chord with reference to a beat where the 
beat is itself defined with less than 100% accuracy. In 
addition, there are many examples of popular music 
where the chord sequence is so repetitive as to offer little 
information alone as to which of the sections is currently 
being played. In these cases, alternative cues such as the 
texture of the music may be helpful. Our distributed ap-
proach (described below) can also produce conflicting 
chord and beat identifications from different instruments 
that require resolution. 

A broader level of synchronization (and context 
knowledge) may also be required. It is not unusual for 
ensembles to move seamlessly from one work (or part of 
a work) to another without forward planning (e.g. see 
Benford et al.’s study of Irish folk music sequencing 
[20]). Recognizing when this occurs and shifting to the 
new work is similar to recognizing sections in general, 
albeit with a larger range of potential sections to select 
from. 

Finally, another important possibility for detecting cue-
ing gestures is the digital score display system described 
in the previous section. An interesting aspect of this inter-
face is that music notation can be bi-directional: The dis-
play can show the computer’s location in the score to the 
reader using a cursor or highlighting graphical areas, and 
the reader can indicate his or her location to the computer 
by pointing to notation (e.g. measures) in the score. 

3.4 Adjusting Tempo 

What does the computer player play? One approach is to 
play pre-recorded audio, using time-stretching techniques 
to adjust the playback tempo. We constructed one HCMP 
system in which the computer played the role of a 20-
piece string orchestra. Each string part was recorded on a 
separate track so that high-quality pitch-synchronous 
overlap-add (PSOLA) time stretching could be used [7]. 
Other techniques such as the phase vocoder can be used 
on polyphonic recordings [4]. 

Another approach is MIDI, since MIDI sequences are 
easily time-stretched. A challenge with MIDI is to simu-
late sounds of acoustic instruments. Sample-based syn-
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thesis is good for isolated notes, but it has difficulty pro-
ducing natural-sounding musical phrases. Progress has 
been made with large sample libraries and automated 
sample selection, but there is still much work to be done. 
Alternative techniques, including physical models and 
spectral models offer more flexible control, but expres-
sive musical control is still an important problem. 

Studies on latency in networked performance suggest 
that the just noticeable difference (JND), the latency set-
ting at which the effect becomes noticeable to the per-
former, is between 20 and 30msec [21]. This also pro-
vides an estimate for the bounds within which the syn-
chronization will be acceptable to human performers. 

3.5 System Architecture 

One lesson from building early systems is that robust 
interactive systems require careful design. The lack of a 
flexible program that supports new performances has 
hindered research, and we are working toward a more 
flexible, modular software architecture for HCMP. 

HCMP systems decompose naturally into components: 
• Input sensors for tapping and cueing, 
• Beat and tempo estimation based on tapping or audio 

analysis, 
• A virtual conductor that accepts position and tempo 

information and distributes it to players, 
• Media players, including variable rate audio players 

based on time-stretching, and MIDI players. 
• Score display (with automated page turning, position 

display) 
• Development and configuration management system 

allowing users to combine media, define cues, make 
arrangements, and store everything so that it can be 
retrieved and used automatically in a performance. 

We are developing components and plan to release a 
system based on “plug-ins” so that end-users can config-
ure their own systems with just the features they need, 
and advanced users can extend the base system through 
scripting languages to provide custom features. 

Our recent work [22] has shown that HCMP technology 
may be more likely to be adopted if it can be delivered 
quickly to users at low-cost and low-risk. We have there-
fore also been exploring the potential of mobile devices 
(such as smartphones) as a way to deliver HCMP sys-
tems. Each instrument in a band would be tracked by a 
smart device (e.g. resting on a music stand), undertaking 
its own audio processing and sending the results to a vir-
tual conductor on another device for music generation.  

This approach poses some interesting new problems. 
Since the audio processing for beat tracking and chord 
recognition is distributed among several devices, data 
fusion becomes paramount, especially in the absence of 
synchronous clocks. There are new opportunities also: 
textural detection may be easier (since the sound level 
can be more easily measured per instrument), beat track-
ing on an individual instrument may be better than on the 
ensemble as a whole (and could be based on knowledge 
of the individual instrument being tracked), and other 
device capabilities (e.g. video) may be usable. Additional 
equipment would not generally be needed by the users 
since we think it reasonable to assume that smart devices 

would be widely available to ensembles through personal 
phones. Where new technology is required (e.g. for ges-
ture tracking) we are seeking to use off-the-shelf con-
sumer devices such as KinectTM (as described above) to 
minimise deployment complexity and cost. 

To expose the research issues, we have undertaken a 
feasibility study to evaluate interactive performance tech-
nologies on consumer devices and in realistic perfor-
mance environments. The aims were to evaluate the diffi-
culty of repackaging this technology for smartphone, to 
assess the musical performance issues raised by doing so 
(e.g. where should the smartphone be placed while per-
forming?), and to understand challenges to the state of the 
art and shape the future development of such techniques. 
We repackaged existing state-of-the-art beat tracking [12] 
and chord-estimation [23] software into smartphone apps 
using libpd [24]. The app was deployed to several iOS 
devices (see Figure 3) linked by a wireless network. 

 
Figure 3. iOS app for beat/chord detection. 

A local church’s worship band area was used as a realis-
tic physical evaluation environment, with a subset of the 
authors forming a band. Five genre-appropriate songs 
were used as test subjects and video, audio, and data from 
the systems were recorded. We also undertook “laborato-
ry” evaluation using multi-track, multi-speaker record-
ings of the same songs to closely replicate live perfor-
mance conditions, but allowing replication and experi-
mental parameter control (see Figure 4).  The gesture-
control detection for band direction was also evaluated in 
this environment. 

 
Figure 4. Simulation of live performance with multiple 
speakers and devices in a shared acoustic space. 

Our analysis indicates that both platform and perfor-
mance context provide significant challenges to state-of-
the-art techniques. Problems include the distribution of 
tracking across multiple devices resulting in latency in 
reporting beats/chords, reconciling multiple independent 
timing streams, and the loss of the full mix at each tracker 
meaning the beat and chord tracking systems have less 
audio to work with. On the positive side, we also found 
evidence that beat tracking on an individual instrument 
track can outperform tracking on the whole mix. 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

281



4. HCMP EVALUATION 
To measure progress, we need ways to evaluate HCMP 
systems.  We have used a range of methods with varying 
levels of detail and rigour in the projects described in this 
paper.  Evaluating HCMP research requires several ap-
proaches given the range of underpinning disciplines and 
potential outcomes. Interactive Music System (IMS) 
evaluation methods vary widely depending on the type of 
system and the particular interest of the researchers.  Col-
lins summarises three main evaluation forms for concert 
systems [25]: direct participant experience, indirect par-
ticipant experience, and technical evaluation of algo-
rithms.   Hsu and Sosnick [26] address the first two as-
pects with a method based on the DECIDE framework.  
Stowell et al. [27] identify the difficulties in evaluating 
IMS, presenting and comparing qualitative and quantita-
tive approaches including comparative listening tests, 
interaction analysis based on video, discourse analysis 
and the (somewhat controversial – see Ariza [28]) “musi-
cal Turing Test”.  They offer useful guidance on the ap-
plication of these techniques:  Discourse analysis may be 
used to assess direct participant experience (i.e. the musi-
cians themselves), and the musical Turing Test (in effect, 
survey methods) used to assess indirect participant expe-
rience (i.e. the non-musicians supported by, or listening 
to the music).  Rowe states that programs for machine 
musicianship should exhibit behaviour that can be ob-
served as correct or incorrect [29].  In the HCMP case 
passing the musical Turing Test will require at least satis-
ficing (i.e. satisfactory and sufficient) output. 

Stowell et al. acknowledge that most evaluation meth-
ods are focused on the experience of performers [27] (e.g. 
Hsu and Sosnick’s framework [26] does not address the 
third of Collins’ criteria), thus the evaluation of HCMP 
systems (particularly the sub-components) will need to be 
supplemented by objective criteria (e.g. measuring laten-
cy of interaction in comparison to experimentally-derived 
musical synchronisation criteria [30, 31], and measures of 
beat-tracking accuracy [32] and chord recognition [23]).  
Adoptability issues will also need to be addressed [22]. 

The ensemble nature of popular music means that other 
than low-level laboratory tests of system components, the 
main evaluation activity will need to involve groups of 
musicians (or simulation of this scenario).  In addition to 
work with live bands, as shown above, multi-track re-
cordings can be used to simulate the live environment by 
replaying performances through electrical or acoustical 
signal paths to multiple speakers and detection systems.. 

5. FUTURE WORK 
Human musicians are often expected to improvise, or at 
least perform from lead sheets, which give music struc-
ture and chords but not the details of notes and rhythms. 
Since human musicians may not have the skills to con-
struct drum beats, bass lines, and other parts, HCMP is an 
excellent domain to investigate automated music compo-
sition. Perhaps music analogies are an interesting way to 
specify goals, i.e. “I want a bass part that sounds like the 
one in ….” Similarly, parts must be performed expres-
sively and musically. Perhaps there are synthesis-by-rule 

approaches [33] or more general theories of expressive 
performance [34] for popular, beat-based music. 

Ideally, an HCMP system would incorporate a learning 
mechanism that would allow it to extract useful infor-
mation about the performance from rehearsals. This could 
make performances more reliable and more autonomous. 

How can we evaluate general musicianship? Even syn-
chronization is difficult to measure objectively: Once 
basic synchronization within 10 or 20 ms has been ob-
tained, rhythmic “feel” that results from deliberate asyn-
chrony [35] may be more important than precise syn-
chronization. As we describe, a range of evaluation 
methods will likely be required, from measures of low-
level performance (synchronization, chord identification) 
through to system-level evaluation methods involving 
performers considering their experiences alongside the 
systems, and audience-focused measures of reception. 
The standards required may vary depending on context: 
A computer that fills in for a human musician in a re-
hearsal or HCMP to facilitate practice at home may have 
modest requirements, while high-profile live performanc-
es in public may require virtuoso-level performance.  The 
development of comprehensive and systematic top-to-
bottom evaluation methodologies for HCMP is thus a key 
topic for future work. 

6. CONCLUSIONS 
HCMP has great potential to be widely used by many 
musicians. There are interesting scientific challenges as 
well as artistic ones. We are in the early stages of explor-
ing possibilities and implementing systems that offer 
synchronization, interaction, and autonomy in live per-
formance, with a focus on steady-tempo popular music, a 
problem which our research community has largely ig-
nored. We believe that HCMP can become a practical, 
useful, and common way to make music, eventually used 
by millions. Ultimately, we hope that some of these users 
will leverage the unique properties of autonomous com-
puter musicians to develop new musical genres. 

Acknowledgments 

Parts of this work were undertaken while Kleinberger 
was at University College London. This work was partly 
supported by the Arts and Humanities Research Council 
[grant number AH/J012408/1]; the Engineering and 
Physical Sciences Research Council [grant number 
EP/G060525/2]; the Department of Computer Science, 
UCL; Microsoft Research; the Royal Academy of Engi-
neering; and the National Science Foundation [grant 
number 0855958]. Depending on the proposed use, some 
data from the RCUK-funded portions of this work may 
be available by contacting Nicolas Gold. Please note that 
intellectual, copyright and performance rights issues may 
prevent the full disclosure of this data. 

7. REFERENCES 
[1] R. B. Dannenberg, “An On-Line Algorithm for Real-Time 

Accompaniment,” in Proc. Int. Computer Music Conf. Par-
is, 1985, pp. 193-198. 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

282



[2] B. Vercoe. “The Synthetic Performer in the Context of 
Live Performance,” in Proc. Int. Computer Music Conf., 
Paris, 1985.  

[3] M. V. Mathews and C. Abbott. “The Sequential Drum,” 
Computer Music Journal, vol. 4, no. 4, pp. 45-59, 1980. 

[4] E. Lee, T. Karrer, and J. Borchers, “Toward a Framework 
for Interactive Systems to Conduct Digital Audio and Vid-
eo Streams,” Computer Music Journal, vol. 30, no. 1, pp. 
21-36, 2006. 

[5] R. B. Dannenberg and C. Raphael, “Music Score 
Alignment and Computer Accompaniment,” Comm. of the 
ACM, vol. 49, no. 8, pp. 38-43, 2006. 

[6] L. Grubb and R. B. Dannenberg, “Computer Performance 
in an Ensemble,” in Proc 3rd Int. Conf. for Music Percep-
tion and Cognition, European Society for the Cognitive 
Sciences of Music, Liege, Belgium, 1994, pp. 57-60. 

[7] R. B. Dannenberg, “A Virtual Orchestra for Human-
Computer Music Performance,” in Proc. Int. Computer 
Music Conf., pp. 185-188, 2011. 

[8] N. Schnell, G. Peeters, S. Lemouton, P. Manoury, X. 
Rodet, “Synthesizing a Choir in Real Time Using Pitch 
Synchronous Overlap Add (PSOLA),” in Proc. Int. Com-
puter Music Conf., Berlin, 2000. 

[9] A. Robertson and M. D. Plumbley, “B-Keeper: A beat 
tracker for real-time synchronization within performance,” 
in Proc. of New Interfaces for Musical Expression (NIME 
2007), New York, 2007, pp 234-237. 

[10] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Da-
vies, M. B. Sandler, “A Tutorial on Onset Detection in 
Music Signals,” in IEEE Trans. on Speech and Audio Pro-
cessing, vol. 13, no. 5, 2005, pp. 1035-1047. 

[11] A. M. Stark, M. E. P. Davies and M. D. Plumbley, “Real-
time beat synchronous analysis of musical signals,” in 
Proc. Digital Audio Effects Conf., 2009, pp. 299-304. 

[12] A. Robertson, A. Stark, and M. Plumbley, “Real-Time 
Visual Beat Tracking Using a Comb Filter Matrix,” in 
Proc. Int. Computer Music Conf. Huddersfield, 2011. 

[13] J. Oliveira, F. Gouyon, L. G. Martins and L. P. Reis, “IBT: 
A Real-time Tempo and Beat Tracking System”, in Proc. 
Int. Symp. on Music Information Retrieval (ISMIR), 2010, 
pp. 291-296. 

[14] F. Gouyon, S. Dixon, “A Review of Automatic Rhythm 
Description Systems,” Computer Music Journal, vol. 29, 
no. 1, pp.34-54, 2005.  

[15] R. B. Dannenberg, and L. Wasserman, “Estimating the 
Error Distribution of a Single Tap Sequence without 
Ground Truth” in Proc. Int. Symp. on Music Information 
Retrieval (ISMIR 2009), 2009, pp. 297-302.  

[16] M. Mauch, H. Fujihara, and M. Goto “Lyrics-to-audio 
alignment and phrase-level segmentation using incomplete 
internet-style chord annotations,” in Proc. Sound and 
Music Computing Conf., Barcelona, 2010. 

[17] N. E. Gold and R. B. Dannenberg, “A Reference 
Architecture and Score Representation for Popular Music 
Human-Computer Music Performance Systems,” in Proc. 
New Interfaces For Musical Expression, Oslo, 2011. 

[18] J. Tang, Extracting Commands From Gestures: Gesture 
Spotting and Recognition for Real-time Music Perfor-
mance (Master’s Thesis), Carnegie Mellon Univ., 2013. 

[19] Z. Duan and B. Pardo, “Aligning Semi-Improvised Music 
Audio with Its Lead Sheet,” Proc. Int. Symp. on Music 
Information Retrieval, Miami, 2011. 

[20] S. Benford, P. Tolmie, A.Y. Ahmed, A. Crabtree, T. 
Rodden, “Supporting Traditional Music-Making: 
Designing for Situated Discretion,” in Proc. ACM 2012 
Conf. on Computer Supported Cooperative Work, Seattle, 
2012. 

[21] N.P. Lago, and F. Kon, "The Quest for Low Latency," in 
Proc. Int. Computer Music Conf., 2004, pp. 33-36. 

[22] N. E. Gold, “A Framework to Evaluate the Adoption 
Potential of Interactive Performance Systems for Popular 
Music,” in Proc. Sound and Music Computing Conf., 
Copenhagen, 2012. 

[23] A. M. Stark and M. D. Plumbley, “Real-Time Chord 
Recognition for Live Performance,” in Proc. Int. Computer 
Music Conf., Montreal, 2009. 

[24] P. Brinkman, Making Musical Apps. O’Reilly, 2012. 
[25] N. Collins, Introduction to Computer Music. John Wiley & 

Sons, Inc., 2010. 
[26] W. Hsu and M. Sosnick, “Evaluating Interactive Music 

Systems: An HCI Approach,” in Proc. New Interfaces for 
Musical Expression, Pittsburgh, PA, 2009. 

[27] D. Stowell, A. Robertson, N. Bryan-Kinns, M. D. 
Plumbley, “Evaluation of Live Human–Computer Music-
Making: Quantitative and Qualitative Approaches,” 
International Journal of Human-Computer Studies, vol. 
67, no. 11, pp. 960–975, 2009. 

[28] C. Ariza, “The interrogator as critic: The Turing Test and 
the Evaluation of Generative Music Systems,” Computer 
Music Journal, vol. 33, no. 2, pp. 48–70, 2009. 

[29] R. Rowe, Machine Musicianship. MIT Press. 2001. 
[30] M. Gurevich and C. Chafe. “Simulation of Networked 

Ensemble Performance with Varying Time Delays: Char-
acterization of Ensemble Accuracy,” in Proc. Int. Comput-
er Music Conference, Miami, 2004. 

[31] R. A. Rasch. “Timing and Synchronization in Ensemble 
Performance,” in Generative Processes in Music: The Psy-
chology of Performance, Improvisation, and Composition. 
J.A. Sloboda, ed. Clarendon Press, pp. 70–90, 1988. 

[32] M. Davies, N. Degara, and M.D. Plumbley. 2009. 
Evaluation methods for musical audio beat tracking 
algorithms, Technical Report C4DM-TR-09-06, Centre for 
Digital Music, Queen Mary University of London. 

[33] J. Sundberg, A. Askenfelt and L. Frydén, “Musical Per-
formance: A Synthesis-by-Rule Approach,” Computer Mu-
sic Journal, vol. 7, no. 1 (Spring), pp 37-43, 1983. 

[34] P. N. Juslin, A. Friberg, and R. Bresin, “Toward a Compu-
tational Model of Expression in Performance: The GERM 
model,” Musicae Scientiae, Special issue, pp. 63-122, 
2001-2002. 

[35] A. Friberg, and A. Sundström, “Swing Ratios and Ensem-
ble Timing in Jazz Performance: Evidence for a Common 
Rhythmic Pattern,” Music Perception, vol. 3, no. 19, pp. 
333-349. 

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

283




