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ABSTRACT

This paper describes work aimed at creating an efficient,
real-time, robust and high performance chord recognition
system for use on a single instrument in a live performance
context. An improved chroma calculation method is com-
bined with a classification technique based on masking out
expected note positions in the chromagram and minimising
the residual energy. We demonstrate that our approach can
be used to classify a wide range of chords, in real-time, on a
frame by frame basis. We present these analysis techniques
as externals for Max/MSP.

1. INTRODUCTION

A chord is the simultaneous sounding of two or more musi-
cal notes, with the interval relationships between these notes
determining the type of chord. The process of automatic
chord recognition [6] is one of assigning a chord label to a
section of audio. As a number of notes are present, and each
note consists of a series of partials, the process typically re-
quires a harmonic analysis of the input signal.

Audio chord recognition has many applications in the
area of music information retrieval, such as annotating the
harmonic content of audio files in a database or for use in
music transcription systems. In this paper we are concerned
with the real-time extraction of chord labels from the live
performance of a single polyphonic instrument. This in-
formation can provide harmonic and structural information
about a performance that may be used to increase the abil-
ity of computer systems to interact with musicians in a live
performance.

A shortfall of previous approaches is the limited number
of chords classified. Several systems only consider major
and minor triads. This can be a problem if a chord con-
tains more than one triad such as a C Major 7 chord which
contains both a C Major triad and an E minor triad. This
can lead to misclassifications. However, we wish to design
a system capable of classifying audio frames as one of 108
chords, specifically the 12 variations of major, minor, di-
minished, augmented, suspended 2nd, suspended 4th, major
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7th, minor 7th and dominant 7th chords. These are more
chords than the majority of approaches in the literature have
considered. This is essential if the extraction of chords from
real world signals is to be achieved.

In many previous approaches, the first step in develop-
ing a chord recognition algorithm has been to convert audio
frames into a representation similar to that of the chroma
vector, also commonly referred to as a pitch class profile
(PCP) or chromagram [4]. A chroma vector is a 12×1 vec-
tor with values representing the energy present in each of
the 12 semitone pitch classes found in western music.

Several techniques have been used to calculate the chro-
magram. Some systems [1, 6, 8] make use of the constant-Q
transform [2] with some of these approaches employing a
tuning algorithm to allow for differences in tuning. Other
techniques calculate the chromagram directly from the dis-
crete Fourier transform (DFT) of the input signal by map-
ping the energy in spectral bins to one of a number of pitch
classes [4, 11] . Lee [7] calculates the chroma vector from
the result of the Harmonic Product Spectrum of the DFT
rather than the DFT itself. Cremer and Derboven [3] present
a technique that uses a frequency warped FFT followed by
the erasing of overtones and the separation of tonal com-
ponents from transients. Gomez [5] finds spectral peaks by
considering local maxima and using quadratic interpolation
to estimate peak magnitudes. The chroma vector is then cal-
culated by weighting each peak by its contribution to each
chroma vector bin.

Once the chromagram, or similar representation, has been
calculated, a variety of techniques can be used to give it
a chord label. Pattern matching techniques generally com-
pare how similar the chroma vector is to a set of chord pro-
files, usually in the form of bit masks. A bit mask is a
12× 1 vector containing a 1 where notes are present and
0 elsewhere. A C Major chord would be represented as
[1,0,0,0,1,0,0,1,0,0,0,0].

Two popular pattern matching methods are (i) to find
the bit mask with the minimum euclidean distance to the
chromagram and (ii) to find the bit mask that maximises the
dot product with the chromagram. In the latter approach, a
weighting can be used to distinguish between chords con-
taining different numbers of notes. For details of these ap-
proaches applied to chord recognition, see [3, 4, 6].
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Figure 1. a) The bin mapping technique: energy in spectral
bins is mapped to a certain pitch class. b) Our technique: the
maximum value in a given range is used as the amplitude
value for the harmonic contributing to that pitch class.

Several attempts have been made to classify chords us-
ing statistical techniques, in particular hidden Markov Mod-
els (HMMs) [1, 8, 10, 11]. Our aim in this paper is to im-
prove baseline extraction in a frame-based classifier for real-
time use and so we do not make use of HMMs.

2. APPROACH

2.1. Improved Chromagram Calculation

Some existing chroma calculation techniques, such as the
ones used in [4, 11], include all energy within a given fre-
quency range in the amplitude value of a certain pitch class
in the chromagram. This idea of using energy within cer-
tain spectral ranges was also used by Orio & Schwartz [9]
in their Peak Structure Distance (PSD) measure. However,
this creates a large potential for unwanted energy such as
noise in the chromagram. We therefore wish to develop a
technique that identifies only the energy in the harmonics
within a given range.

The first step in our approach multiplies the signal frame
by a Hamming window and calculates the magnitude spec-
trum, X(k), using the DFT. The square root of the magni-
tude spectrum is taken to reduce the amplitude difference
between harmonic peaks. Then frequencies of the lower oc-
tave, starting from fC3 = 130.81Hz, are calculated by f (n)=
fC3 ·2(n/12) for n = 0,1, ...,P−1 where P = 12, the number
of notes in an octave. An important part of our approach is
that we consider only the energy present in the partial itself,
by finding the largest peak within a given frequency range,
rather than including all energy within that range which can
add unwanted energy into our chromagram (see Figure 1).
Also, through the process of searching for the partial within
a given range, we allow our system to detect partials that are

slightly inharmonic. The chroma vector, C, is calculated by:
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where n = 0,1, ...,P−1 where P = 12, the number of notes
in an octave, φ is the number of the octave to consider and
h is the number of the harmonic. The value r, for which we
choose 2, is the number of bins to search either side of a
frequency for a maximum peak, k(n,φ ,h)

0 = k′(n,φ ,h)− (r · h),
k(n,φ ,h)

1 = k′(n,φ ,h) +(r ·h) and

k′(n,φ ,h) = round
( f (n) ·φ ·h

( fs/L)

)
(2)

where fs is the sampling frequency and L is the frame size.
Through considering the magnitude of spectral peaks

our approach has similarities to [5], however as we are fo-
cused upon a rhythmic accompaniment, we analyse a much
smaller portion of the spectrum. We hypothesise that the
majority of instruments playing a rhythmic accompaniment
use the lower register of the instrument so our approach ex-
amines 2 octaves of the spectrum, between fC3 = 130.81Hz
and fC5 = 523.25Hz. Real instruments are not perfectly
harmonic and so to reduce problems arising from this only
2 partials are considered and inharmonicity is allowed for
by searching for partials within a given range. To be able
to comfortably achieve quarter-tone frequency resolution at
130.81Hz we use a sampling frequency of 11025Hz and a
frame size of 8192 samples (0.74s).

2.2. Chord Classification

To classify the chroma vector, we employ an approach based
upon residual energy in the chromagram. Bit mask represen-
tations imply that the energy in a normalised chroma vector
for a note that is present will be both close to 1 and similar
in value to that of other present notes. A nearest neighbour
comparison [4] will yield best results for a chroma vector
that has values of exactly 1 for all notes present and 0 oth-
erwise, but our experience has shown that this is unlikely
to be the case. The weighted sum technique [4, 6] suffers
from a problem when it is necessary to classify chords that
contain different numbers of notes. A dot product is likely
to produce a larger result for the chord with more notes, so
a weighting is needed to differentiate between the chords.
Due to the potential for variability in the energy of notes
present in the chroma vector, the setting of this weighting is
difficult to decide upon and if not thought through carefully,
can be arbitrary. As a result we wish to develop a technique
that avoids the problem of the variable amplitude of notes.

To solve this problem, we classify chords by masking
out the notes hypothesised to be in the chord by each bit
mask, instead minimising the energy outside of the mask.
This is achieved by finding the minimal dot product between



the chromagram and a ‘complementary’ bit mask, calcu-
lated from the original bit mask. To achieve this, for each
bit mask, we calculate:

δi =

√
∑

P−1
n=0 T̄i(n)(C(n))2

(P−Ni)
(3)

where C is the chroma vector, T̄i(n) = 1−Ti(n) where Ti is
the ith bit mask, Ni is the number of notes in the ith bit mask
and P = 12, the number of notes in an octave. Dividing by
(P−Ni) is designed to prevent chords with less notes having
a natural advantage over other chords. This our equivalent
of a ‘weighting’ between chords but we hypothesise that the
amplitude of the noise floor will be more consistent than that
of sounded notes and so the potential for error is reduced.
We choose the chord that minimises δi.

2.3. Chromagram-Unresolvable Chords

Certain chords, when represented using a chromagram, are
indistinguishable from other chords as they contain exactly
the same notes. From the set of chords that we are attempt-
ing to classify, this problem occurs with augmented chords
and between some suspended 2nd and 4th chords.

By providing the root note to these chords we can re-
solve them as well as any other type. However, we do not
know the root note and our informal tests have shown that
we cannot assume that it will be the lowest note or the note
with the most energy. As a solution, we employ the follow-
ing heuristic.

We extract a ‘low’ chromagram, Clow, from the lowest
octave by restricting the value for the octave, φ , in equation
1, to 1. We then use this to create a weighting for the sus-
pended chords, Wsus, by examining the relationship between
the root and fifth (7 semitones higher) in Clow:

Wsus(n) = (1−α) ·Clow(n)+α ·Clow(mod(n+7,P)) (4)

where P = 12 and we choose α = 1/3. Similarly, we create
a weighting for the augmented chords, Waug, by:

Waug(n) = (1−α) ·Clow(n)+α ·Clow(mod(n+8,P)). (5)

We then apply these weightings to the δi values for ‘unre-
solvable’ chords so that chords with certain root notes are
favoured and consequently these chords become resolvable.

2.4. Compensating for ‘Ghost Notes’

Problems can arise relating to overtones of the fundamental
which occur at approximately n f0, for integers n ≥ 2. Par-
ticular problems occur with the 3rd harmonic, 3 f0, as this is
an interval of a fifth above the fundamental and, for some
notes, is low enough in frequency to be considered by our
algorithm. The result is extra energy in the chroma bin 7
semitones up from each fundamental note.

Unable to solve this problem through changes to the
chroma calculation technique, we experimented with the in-
terim solution of adding small bias values, β , to equation
3 that allowed us to correct for the problems introduced by
misidentified fundamentals:

δi =

√
∑

P−1
n=0 T̄i(n)(C(n))2

(P−Ni)(β )
. (6)

We chose β = 1 as the basic case (no bias) and chose β =
1.06 for chords that were prone to misidentification due to
the presence of these ‘ghost notes’. We found that this value
did not detract from the ability of the system to correctly
identify chords that were not given the bias, it simply re-
duced the misidentifications to an acceptable number.

3. EVALUATION

The system was implemented offline in Matlab and also as a
Max/MSP ‘external’ for real-time use1. A hop size of 1024
samples at 11025Hz was used to achieve more regular chord
identification leading to around 10 estimates per second.

We conducted an initial evaluation of our system based
upon the classification of audio frames. We created a test set
of real world examples of 180 chords played on two differ-
ent guitars with 4 frames randomly selected from the record-
ing of each chord to create 1440 frames with accompanying
labels, totalling over 17 minutes of audio. Each chord type
(major, minor, diminished etc) had at least a whole octave in
the data set, with some types having up to 2 octaves. We felt
that this was a rigourous test method examining the ability
of the algorithm to recognise chords over many examples
with different root note frequencies. Note that we are fo-
cusing upon analysis of a single polyphonic instrument and
so our evaluation and results will differ from more generic
evaluations on collections of commercial music recordings.

The label of each frame consisted of the root note of the
chord, the quality (major, minor, diminished etc) and any
other intervals present in the chord (e.g. minor 7th). We
recorded the performance of the system at all 3 levels.

We compared our technique to two other chromagram
calculation techniques. These were the technique used in
[1], an adaptation of the constant-Q based technique pre-
sented in [6] which we refer to as CQ, and another tech-
nique largely related to the techniques used in [4, 11] where
spectral bins are mapped to chroma bins which we refer to as
BM. We shall refer to our technique as the Proposed chroma.

As can be seen in Figure 2, our proposed chroma calcu-
lation algorithm both performs better at all three levels and
has a much lower reduction in performance when all levels
are considered. For example, our system identifies the cor-
rect root note in 94% of cases and only drops 1.3% when

1http://www.elec.qmul.ac.uk/digitalmusic/people/adams/chordrec/
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Figure 2. Performance of different chroma calculation tech-
niques. CQ = a constant-Q based technique, BM = a bin-
mapping technique and Proposed = our approach. The re-
sults are across all 1440 examples. R = Root Note, Q = Root
Note and Quality and I = Root Note, Quality and Intervals.

all three levels are considered. This is in contrast to the CQ
technique which suffers a 15% decline in performance.

Examining the results of our method in more detail (Ta-
ble 1) we find that the system performed very well on most
chord types, scoring 92.7% on average for the extraction of
the root note, chord quality and any other intervals. Lower
performance was achieved on chord types liable to confu-
sion due to identical chromagram representations as dis-
cussed in Section 2.3. The system still incorrectly identified
some major and minor triads as 7th chords due to ‘ghost
note’ problems identified in Section 2.4. However, this was
greatly reduced by our measures to counter this problem.

We also compared our classification technique to other
classification techniques. These were a Nearest Neighbour
(NN) classifier and a Weighted Sum (WS). Our approach
showed greater performance by a margin of 1.2% over the
NN technique and 20.1% over the WS when root note, chord
quality and all other intervals are considered.

Informal tests with several instruments, including a pi-
ano and several synthesisers, indicate that our algorithm per-
forms well on those instruments as well as the guitar.

Chord Type R (%) Q (%) I (%)
Major/Minor 99.5 97.9 97.7
Diminished 100 100 100
Augmented 84.0 84.0 84.0
Sus2 / Sus4 85.4 83.3 82.3

Major 7 99.3 99.3 99.3
Minor 7 97.2 97.2 97.2

Dominant 7 100 100 100
Total (Over Examples) 94.0 93.1 92.7

Table 1. Results of evaluation of the chord detection algo-
rithm. R = Root Note, Q = Root Note and Quality and I =
Root Note, Quality and Intervals.

4. CONCLUSION

We have presented a real-time chord recognition system that
allows for inharmonicity in the input signal and have shown
that by classifying chords based upon residual chroma vec-
tor energy we can accurately identify many types of chords.

Our experimental results indicate that the system per-
forms very well on real-world guitar recordings, producing
improved results over other state of the art approaches. In-
formal use of the system in a real-time environment appears
to confirm this with many different chord types being con-
sistently identified. In future we wish to evaluate the perfor-
mance of our system across whole performances and to in-
vestigate whether the results can be improved using HMMs.
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