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ABSTRACT

We present a technique for following a live performance in
the situation where a score is not available. Making use of a
local alignment between recent and longer term musical in-
formation, we place the present in the context of the past, al-
lowing the prediction of future performance information. By
representing music as sequences of beat-synchronous features
we reduce the size of the information needed to represent the
performance and allow performance following in real-time to
occur.

Index Terms— Music, Real time systems

1. INTRODUCTION

In recent years, much research has been undertaken into auto-
matic musical accompaniment, in particular score following
[1]. Score following is the matching of events in a musical
performance to notes, or groups of notes, in a score. The po-
sitional information provided by this matching process allows
for the future of the performance to be determined and a co-
herent musical accompaniment to be played.

In this paper we address the problem of generating a co-
herent musical accompaniment to a performance for which
no score exists. This scenario happens often amongst human
musicians - either no score is available, as in much rock or
pop music, or the music may be improvised. This problem,
which we will call performance following, can be approached
by taking advantage of the fact that much music contains rep-
etitions of musical phrases. Human musicians are capable of
recognising these repetitions and making predictions of the
future performance based upon the past. Here we seek to au-
tomate this performance following process.

Our problem is explained as follows: Considering the
previous few minutes of a performance and the most recent
few seconds, by assuming the music contains some repetition,
can we predict the future of the performance by placing our
shorter fragment of music in the context of the longer one?
If so, then we can ‘learn’ a piece of music ‘on the fly’ and
possibly play a coherent musical accompaniment, such as a
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bassline or melody, with no prior knowledge in the form of
a score. Furthermore, while there has been recent work on
offline automatic acompaniment systems [2], in this work we
are interested in real-time approaches.

2. ALGORITHMS FOR SEQUENCE ALIGNMENT

Many, but not all, musical styles can be characterised by the
repetition of musical patterns. It is possible to represent these
patterns as ordered sequences - either of notes, chords or other
features. The automatic extraction of information related to
these patterns is useful for many applications including music
information retrieval, structural analysis and score following.

There exist several algorithms in the field of computa-
tional biology for comparing pairs of sequences. Needleman
and Wunsch [3] have presented a technique for the global
alignment of two sequences of amino acids. First a score
matrix is calculated based upon the similarity of the two se-
quences. Then a dynamic programming technique is used to
calculate all possible pathways through the matrix, followed
by a traceback step to find the best alignment. This technique
was extended by Smith and Waterman [4] to calculate local
alignments - that is the highest scoring alignment of two sub-
sequences of two longer sequences.

The application of sequence alignment algorithms to mu-
sic has been widespread. Mongeau and Sankoff [5] present
a technique for the computation of a value of similarity be-
tween two musical scores. Sequence alignment techniques
have also been applied in the fields of music information re-
trieval [6] and structural analysis of music [7] .

2.1. Musical Sequence Alignment in Live Performance
Systems

There have been several score following applications of se-
quence alignment to music. Dannenberg [8] uses pitch es-
timation of monophonic audio to align a performance to a
score using sequence alignment techniques. Several tech-
niques to adapt this system to handle polyphonic keyboard
performances were later presented [9]. Pardo and Birming-
ham [10] present a system that allows a polyphonic MIDI
performance to be compared to a lead sheet. Dannenberg and



Hu [11] present a technique for aligning a performance in the
form of polyphonic audio to a symbolic MIDI file. Dixon and
Widmer introduced a technique for aligning polyphonic au-
dio recordings of different performances of the same piece of
music [12]. This algorithm was later adapted and applied to
the real-time case of tracking a live performance [13].

These previous techniques for tracking a live perfor-
mance have largely used a global alignment between the
performance and the score, calculating an alignment matrix
step by step over the course of the performance. We do not
have a global score to match against and so in this paper we
present a system that uses a local alignment. This requires us
to compute a new matrix at every step to find the best align-
ment between a shorter sequence and a longer sequence. The
result is that we are able to place recent musical information
in the context of the whole performance to detect repetitions
of previous musical themes, allowing us to predict the future
of the performance, with no use of a score. In order to deal
with the computation of a matrix at every step during the per-
formance, we represent the performance beat-synchronously,
with a single feature for each beat. This reduces the length of
sequences considerably.

3. METHOD

3.1. Beat-Synchronous Sequences

Beat-synchronous sequences are sequences calculated from
music that has been segmented at the level of the beat such
that each symbol represents information about a single inter-
beat interval. There are several advantages to representing
music beat-synchronously for our application. Firstly, as we
are recomputing an alignment at every step, the representation
of music beat-synchronously reduces the number of symbols
in each sequence and thereby the required computation time
as less calculations are needed to make the comparison be-
tween sequences. For example, if we have an audio frame
size of 1024 samples at a sampling rate of 44.1kHz, then we
need 2583 symbols to represent 60 seconds. However, at a
tempo of 120bpm, we need only 120 symbols to represent
the same amount of time beat-synchronously. Further to this,
beat-synchronous symbol sequences will represent the same
musical progression with the same number of symbols regard-
less of tempo. Finally, harmonic changes often occur at beat
locations and so we may lessen the possibility of a symbol
that has been calculated from a frame containing a harmonic
change as the change is likely to take place at the beginning
or the end of the beat-synchronous segment.

In order to create beat-synchronous sequences in real-
time, we use a beat tracker combined with some harmonic
analysis techniques. We will first present a general explana-
tion of our alignment algorithm for simple monosymbolic se-
quences generated using chord recognition before discussing
the extension to polysymbolic sequences of chroma vectors.

50

Sequece A (beats)

250

300
20

25 30
Sequence B (beats)

Fig. 1. The matrix resulting from the comparison of the pre-
vious 300 beats of a performance with the previous 50. As
can be seen in the final column of the matrix, there are three
potential alignments (identified by arrows) for the fragment
indicating that the fragment contains a repeated part of the
performance.

3.2. Real-Time Sequence Prediction

We present an adaptation of the Smith-Waterman algo-
rithm for local genetic sequence alignment [4]. Our algo-
rithm takes as input two sequences, A = aq, as, ...,an and
B = by,bs,...,by, where A is a longer sequence of length
N and B is a shorter sequence of length M < N. The output
of the algorithm is the next predicted element of sequence B
based upon the local alignment with sequence A. The first
step is the calculation of a similarity score matrix, s. For the
most simple case, we calculate:

if a; = bj

.. S
s(w)={ o ifay £, (1)

for1 < i < N,1 < 35 < M, sy and s_ are the match
and mismatch scores for which we choose s; = 1 and s_ =
—1/3. We then calculate the matrix H, with the value H,; ;
indicating the score for the alignment of two sub-sequences
ending in a; and b;. We first set all the values H; o, Ho ;
and H g to zero. Then we calculate the rest of the matrix as
follows:

Hi_1,-1+s(i,7)

I Hij; =W
H; ; = max Hij 1 - W 2)
0

where 1 <¢ < Nand1 < j < M and W is the gap penalty
for which we choose W = %, in a similar way to Smith and



Waterman [4]. The gap penalty penalises alignments that con-
tain inserted or deleted symbols.

From the matrix H, an algorithm such as the Smith—
Waterman algorithm would find the largest value in the matrix
and perform a traceback to compute the alignment. However,
we do not wish to compute an alignment, only to identify the
next element in the sequence given the values in the matrix.
Furthermore, we wish to restrict the alignment to include the
rightmost elements of the sequence B as these are the most
recent information. As a result, we choose the value

i =arg Jax, H; 3)

and then predict the next element, lA)MH, of the sequence B
to be:

bM +1 = A¢41 (4’)
At each beat, as a new beat-synchronous symbol, ¢y, is re-
ceived, we update the shorter sequence B as follows:

szg,bg...,bM,Cnew (5)

The prediction is made by comparing sequences A and B
and then the new symbol, ey, is added to sequence A in a
similar way to equation 5.

Figure 1 shows the resulting matrix of the comparison of
the previous 300 beats of a performance with the previous 50
beats. By examining the final column of the matrix, we can
see that there are several points at which the fragment has a
particularly strong alignment as this fragment is repeated sev-
eral times. It is possible that a fragment will produce two or
more equally strong alignments and so the choice of the ear-
lier or later is a design choice depending upon the application.

4. EXTENSION TO CHROMA VECTOR
SEQUENCES

We have seen the implementation of our technique for
monosymbolic sequences. In order to consider polysymbolic
sequences, we consider sequences A and B as sequences of
chroma vectors. A chroma vector is a 12 x 1 vector whose
values represent the energy present in each of the 12 semitone
pitch classes found in western music. We achieve this using
the chroma calculation technique we developed in [14]. We
adapt our algorithm by calculating the similarity score matrix,
s, from the inner product of the chroma vectors:

P-1

s(i,4) = Y _ ai(n) x bj(n) (6)

n=0

where a;(n) is the nth chroma bin of the ith element of se-
quence A, b;(n) is the nth chroma bin of the jth element of
sequence B,1 <i < N,1<j < M and P = 12, the num-
ber of bins in each chroma vector. We then proceed, calcu-
lating the rest of the matrix as for the monosymbolic version
and then predicting the next chroma vector in the sequence.

l Song \ Beats \ Changes ‘
1. I Saw Her Standing... | 84.2% (377/448) | 50.0% (28/56)
2. Misery 75.4% (172/228) | 45.5% (20/44)
3. Anna (Go To Him) 82.1% (257/313) | 58.7% (37/63)
4. Chains 88.8% (270/304) | 59.5% (22/37)
5. Boys 93.2% (313/336) | 76.6% (36/47)
6. Ask Me Why 73.8% (228/309) | 43.8% (28/64)
7. Please Please Me 77.4% (205/265) | 55.9% (38/68)

8. Love Me Do 80.4% (270/336) | 62.5% (40/64)

9. P.S. I Love You
10. Baby It’s You

73.6% (198/269)
84.5% (240/234)

47.7% (31/65)
56.0% (28/50)

11. Do You Want To... 72.7% (141/194) 50.0% (25/50)
12. A Taste Of Honey | 56.7% (135/238) | 49.1% (54/110)
13. There’s A Place 69.5% (178/256) 33.9% (19/56)
14. Twist and Shout 86.9/% (265/305) | 82.9% (87/105)

| Average [ 78.5% [ 55.1% |

Table 1. The results of testing our technique on chord se-
quence annotations of the album Please Please Me by The
Beatles. The figures are for the number of correctly predicted
beats and the number of correctly predicted chord changes.

5. EVALUATION

We assess our technique using hand annotated beat-synchronous
chord transcriptions of the songs of the Beatles album Please
Please Me. For each song, we have our system attempt to
predict the chord sequence with no prior knowledge.

To measure performance we consider both the percentage
of correctly predicted chords and the changes in the ground
truth chord sequence, determining the percentage of correctly
predicted chords at chord change locations. We choose se-
quence lengths of N = 500 and M = 20.

As can be seen in Table 1, the results show that our algo-
rithm was able to correctly predict 55.1% of chord changes
across all songs (879 chord changes) despite having no prior
knowledge of each piece of music in the form of a score. This
result is explained better by Figure 2. This figure shows the
ground truth and predictions for the song Baby It’s You, for
which 56% of chord changes were correctly predicted. As
can be seen, the system spends the first approximately 110
beats of the song missing chord changes as the system sim-
ply outputs the last chord it recognised as it can’t find any
other alignment. However, as soon as a fragment is repeated,
the predictions become accurate. This behaviour is typical
for our technique: in general a period of poor performance is
followed by much better performance once repetitions in the
music have been identified. This has also been the case in
informal real-time tests in live performance situations.

In attempting to evaluate performance on this new type
of task we are presented with several problems. In particu-
lar, in order to produce a beat-synchronous sequence in real-
time we require both a beat-tracker and some analysis tech-
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Fig. 2. The performance of our system on the song Baby Its You. The solid line is the ground truth while the dotted line is the
prediction made by the system. As can be seen, after approximately 110 beats the system recognised the repetition of an earlier
musical progression and managed to predict the rest of the song almost correctly. Chord numbers 1-12 are C Major through to

B Major and 13-24 are C minor through to B minor.

nique such as a chord detection algorithm. These algorithms
will likely not exhibit 100% accuracy and so there will be a
compounding of the errors of the analysis techniques and of
our sequence alignment technique. While this may well be
the case in a real-world situation, it makes it very difficult to
assess the performance of our sequence alignment technique
independently of the analysis algorithms. For this reason we
have evaluated our technique using hand annotated data. Fu-
ture work will include an extensive evaluation on both sym-
bolic and real-time performance data and a focus on handling
errors from analysis algorithms.

The reason for including performance at chord change lo-
cations is that much of the data contains repetitions of the
same chord for several beats, or even bars. Our experience
shows that simply predicting that the chord will be the same
as the previous one will achieve a reasonably high score for
the percentage of correctly predicted chords overall.

6. CONCLUSION

We have presented a technique for interpreting a live mu-
sical performance such that a coherent musical accompani-
ment may be played, despite the lack of any information in
the form of a score. We have shown that musical repetitions
can be recognised and so the future of performances can be
predicted, creating potential for real-time performance appli-
cations capable of improvised accompaniment.
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